

RBSE

CHAPTERWISE PYQ

PHYSICS

Content

Chapters		Page No.
1.	ELECTRIC CHARGES AND FIELDS	02-05
2.	ELECTROSTATIC POTENTIAL AND CAPACITANCE	06-09
3.	CURRENT ELECTRICITY	10-13
4.	MOVING CHARGES AND MAGNETISM	14-16
5.	MAGNETISM AND MATTER	17-19
6.	ELECTROMAGNETIC INDUCTIONS	20-21
7.	ALTERNATING CURRENT	22-25
8.	ELECTROMAGNETIC WAVES	26-28
9.	RAY OPTICS AND OPTICAL INSTRUMENTS	29-33
10	. WAVE OPTICS	34-37
11	. DUAL NATURE OF RADIATION AND	38-42
12	a. ATOMS	43-44
13	s. NUCLEI	45-46
14	. SEMICONDUCTOR	47-50

WEBSITE

01

ELECTRIC CHARGES AND FIELDS

[Section-A]

Multiple Choice Questions:-

1. There are 'n' electric dipole situated inside a closed surface. The value of net electric flux leaving from the closed surface will be:

(A)
$$\frac{nq}{\epsilon_0}$$

(B) $\frac{q}{\epsilon_0}$

(C)
$$\frac{q}{n \in 0}$$

(D) Zero

(RBSE 2021)

[1M]

[1M]

2. The SI unit of electric flux is -

(A) NC⁻¹m²

(B) NC-1m-2

(C) $N^{-1}C^{-1}m^{-2}$

(D) $N^{-1}C^{1}m^{2}$

(RBSE 2022, 2025)

3. The SI value of permittivity of free space or vacuum is-

(A) $9 \times 10^9 \text{ Nm}^2\text{C}^{-2}$

(B) $9 \times 10^{-9} \text{ Nm}^2\text{C}^{-2}$

(C) $8.854 \times 10^{-12} \text{ C}^2\text{N}^{-1}\text{m}^{-2}$

(D) $8.854 \times 10^{+12} \,\mathrm{C}^2\mathrm{N}^{-1}\mathrm{m}^{-2}$

(RBSE 2023)

4. The electric flux on a Gaussian spherical surface of radius 15 cm, drawn with a point charge as the centre, is ' ϕ '. If the radius of this surface is tripled then the electric flux passing through the surface will be –

(A) Zero

(B) Infinity

(C) 3ϕ

(D) ϕ

(RBSE 2024)

5. The force between two point charges placed at distance r apart, is F . If the distance increased to 2r between the charges then force will be [0.5M]

(A) F

(B) $\frac{F}{2}$

(C) $\frac{F}{4}$

(D) $\frac{F}{8}$

(RBSE 2025)

[Section-B]

Short Answer Type Questions:-

17. Calculate the electric potential at distance r produced by a point charge +Q. [1.5M] (RBSE 2025)

18. An infinite line charge produces a field of $4.5\times10^4 \rm NC^{-1}$ at a distance 4 cm . Calculate the linear charge density of it.

(RBSE 2025)

[Section-C]

Long Answer Type Questions:-

- 19. (a) Derive a relation for electric field due to an electric dipole at a point on the equatorial plane of the electric dipole. Draw necessary diagram.
 - (b) An electric dipole of charge \pm 1 μ C exists inside a spherical Gaussian surface of radius 1 cm. Write the value of outgoing flux from the Gaussian surface.

(RBSE 2015)

20. Write Gauss's law. Using this law, find the electric field due to a uniformly charged infinite plane sheet at a point near the sheet. [3M]

(RBSE 2013, 2019, 2022, 2024)

21. Write the definition of electric dipole. An electric dipole is place in uniform external electric field (\vec{E})) as shown in the figure. calculate the torque on this electric dipole [3M]

(RBSE 2022)

22. Derive formula for the electric field due to electric dipole at any point on the equatorial plane.

Draw necessary diagram.

[3M]

(RBSE 2015, 2024)

[Section-D]

Very Long Answer Type Questions:-

23. Write the statement of Gauss' law for electrostatics. Draw a diagram and derive an expression for electric field due to a uniformly charged infinite plane sheet at a point near the sheet. In the given diagram write the value of electric flux passing from the surface.

$$\begin{array}{c}
 \bullet q_1 = 2\mu c \\
 \bullet q_2 = -1\mu c
\end{array}$$

[4M]

(RBSE 2013, 2019, 2023, 2024)

24. Define electric flux. Apply Gauss' law to obtain an expression for the electric field intensity at a point due to an infinitely long uniformly charged straight wire. Draw the necessary diagram. [4M]

(RBSE 2014, 2016, 2017)

25. Write definition of electric field intensity. Obtain an expression for electric force and electric pressure on the surface of a charged conductor. Draw necessary diagram. [4M]

(RBSE 2018)

- 26. (a) Write the statement of Gauss's law for electrostatics. Derive an expression for electric field due to an uniformly charged infinite non-conducting sheet at a point near to it. Draw suitable diagram. (RBSE 2013,RBSE 2022)
 - (b) Calculate net electric flux from shaded region in given diagram.

[4 MARKS] (RBSE 2019)

- 27. State Gauss' law in electrostatic. Using this law derive an expression for intensity of electric field at any point near to a uniformly charged infinite conducting plate. Draw necessary diagram. [4M] (RBSE 2021)
- 28. Define intensity of electric field. Obtain the formula for the intensity of electric field at a point on the axial line due to the electric dipole. Draw necessary diagram. [4M]

 (RBSE 2021)

ZONE

